- Vector Space Axioms: Let V be a set on which the operations of addition $\mathbf{x}+\mathbf{y}$ and scalar multiplication $\alpha \mathbf{x}$ are defined for all $\mathbf{x}, \mathbf{y} \in V$ and scalar $\alpha \in \mathbb{R}$. The set V together with the operations of addition and scalar multiplication is said to form a vector space if the following axioms are satisfied:

C1. If $\mathbf{x} \in V$ and α is a scalar, then $\alpha \mathbf{x} \in V$
C2. If $\mathbf{x}, \mathbf{y} \in V$, then $\mathbf{x}+\mathbf{y} \in V$
A1. $\mathrm{x}+\mathrm{y}=\mathrm{y}+\mathrm{x}$
A2. $(x+y)+z=x+(y+z)$
A3. There exists an element $\mathbf{0}$ in V such that $\mathbf{x}+\mathbf{0}=\mathbf{x}$ for each $\mathbf{x} \in V$

A4. For each $\mathbf{x} \in V$ there exists an element $-\mathbf{x} \in V$ such that $\mathbf{x}+(-\mathbf{x})=\mathbf{0}$.
A5. $\alpha(\mathbf{x}+\mathbf{y})=\alpha \mathbf{x}+\alpha \mathbf{y}$
A6. $(\alpha+\beta) \mathbf{x}=\alpha \mathbf{x}+\beta \mathbf{x}$
A7. $(\alpha \beta) \mathbf{x}=\alpha(\beta \mathbf{x})$
A8. $1 \mathrm{x}=\mathrm{x}$

- Subspace: If S is a nonempty subset of a vector space V, and S satisfies the conditions
(i) $\alpha \mathbf{x} \in S$ whenever $\mathbf{x} \in S$ for any scalar α
(ii) $\mathbf{x}+\mathbf{y} \in S$ whenever $\mathbf{x} \in S$ and $\mathbf{y} \in S$
then S is said to be a subspace of V.
- Let $v_{1}, v_{2}, \cdots, v_{n}$ be vectors in a vector space V. The set $\left\{\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots \alpha_{n} v_{n} \mid \alpha_{1}, \cdots, \alpha_{n} \in \mathbb{R}\right\}$ is called the span of $v_{1}, v_{2}, \cdots, v_{n}$ and is denoted by $\operatorname{Span}\left(v_{1}, v_{2}, \cdots, v_{n}\right)$.
- The vectors $v_{1}, v_{2}, \cdots, v_{n}$ in a vector space V are said to be linearly independent if $c_{1} v_{1}+c_{2} v_{2}+\cdots c_{n} v_{n}=\mathbf{0}$ implies that all the scalars $c_{1}=c_{2}=\cdots=c_{n}=0$.

Theorem 0.1. Let $\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{n}$ be n vectors in \mathbb{R}^{n} and let $X=\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{n}\right)$. The vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{n}$ will be linearly independent and span \mathbb{R}^{n} if and only if X is nonsingular.

- If vectors $v_{1}, v_{2}, \cdots, v_{n}$ are linearly independent and span V, then $v_{1}, v_{2}, \cdots, v_{n}$ form a basis for V and V has dimension n.

Theorem 0.2. If vectors $v_{1}, v_{2}, \cdots, v_{n}$ form a basis for V, then any collection of (strictly) more than n vectors in V, is linearly dependent.

- Let $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ be the standard basis for \mathbb{R}^{2} and $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ be another ordered basis. $U=\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)$ is called the transition matrix from $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ to $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$. If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is also an ordered basis and V is the transition matrix from $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ to $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$. Then the transition matrix from $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ to $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is $U^{-1} V$
- The rank of a matrix A, denoted $\operatorname{rank}(A)$, is the number of non-zero rows in the reduced echelon form of A. The dimension of the null space of a matrix is called the nullity of the matrix.

Theorem 0.3. If A is an $m \times n$ matrix, then the rank of A plus the nullity of A equals n.

- For an $n \times n$ matrix $A=\left(a_{i j}\right), p(\lambda)=\operatorname{det}(A-$ $\lambda I)$ is called the characteristic polynomial of A. $\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}$ is called the trace of A.
Theorem 0.4. If $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ are the eigenvalues of A, then

$$
\begin{align*}
\lambda_{1} \cdot \lambda_{2} \cdots \lambda_{n}=p(0) & =\operatorname{det}(A) \tag{0.1}\\
\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n} & =\operatorname{tr}(A) \tag{0.2}
\end{align*}=\sum_{i=1}^{n} a_{i i}
$$

Theorem 0.5. Let A and B be two $n \times n$ matrices. If there is a nonsingular matrix S such that $B=S^{-1} A S$, then A and B have the same characteristic polynomial and the the same eigenvalues.

- An $n \times n$ matrix A is said to be diagonalizable if there exists a nonsingular matrix X and a diagonal matrix D such that $X^{-1} A X=D$. We say that X diagonalizes A.

Theorem 0.6. An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

- A mapping L from a vector space V into a vector space W is said to be a linear transformation if for all $v_{1}, v_{2} \in V$ and all scalars α
(i) $L\left(v_{1}+v_{2}\right)=L\left(v_{1}\right)+L\left(v_{2}\right)$
(ii) $L\left(\alpha v_{1}\right)=\alpha L\left(v_{1}\right)$
- Let $L: V \rightarrow W$ be a linear transformation. Let $\mathbf{0}_{V}$ and $\mathbf{0}_{W}$ be the zero vectors in V and W, respectively. The kernel of L, denoted $\operatorname{ker}(L)$, is defined by

$$
\operatorname{ker}(L)=\left\{v \in V \mid L(v)=\mathbf{0}_{W}\right\}
$$

Let S be a subspace of V. The image of S, denoted $L(S)$, is defined by

$$
L(S)=\{L(v) \mid v \in S\}
$$

The image of the entire vector space, $L(V)$, is called the range of L.

- Let $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. An $m \times n$ matrix A is called the (standard) matrix representation of A if

$$
L(\mathbf{x})=A \mathbf{x}, \quad \mathbf{x} \in \mathbb{R}^{n}
$$

Theorem 0.7. For any linear transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, L has an $m \times n$ matrix representation A. Moreover,

$$
A=\left(L\left(\mathbf{e}_{1}\right), L\left(\mathbf{e}_{2}\right), \cdots, L\left(\mathbf{e}_{n}\right)\right)
$$

where $\mathbf{e}_{\mathbf{1}}, \cdots, \mathbf{e}_{\mathbf{n}}$ is the standard basis of \mathbb{R}^{n}.

