- Vector Space Axioms: Let V be a set on which the operations of addition $\mathbf{x} + \mathbf{y}$ and scalar multiplication $\alpha \mathbf{x}$ are defined for all $\mathbf{x}, \mathbf{y} \in V$ and scalar $\alpha \in \mathbb{R}$. The set V together with the operations of addition and scalar multiplication is said to form a vector space if the following axioms are satisfied:
 - **C1.** If $\mathbf{x} \in V$ and α is a scalar, then $\alpha \mathbf{x} \in V$
 - C2. If $\mathbf{x}, \mathbf{y} \in V$, then $\mathbf{x} + \mathbf{y} \in V$

A1.
$$\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$$

- **A2.** (x + y) + z = x + (y + z)
- **A3.** There exists an element **0** in V such that $\mathbf{x} + \mathbf{0} = \mathbf{x}$ for each $\mathbf{x} \in V$
- **A4.** For each $\mathbf{x} \in V$ there exists an element $-\mathbf{x} \in V$ such that $\mathbf{x} + (-\mathbf{x}) = \mathbf{0}$.
- A5. $\alpha(\mathbf{x} + \mathbf{y}) = \alpha \mathbf{x} + \alpha \mathbf{y}$
- A6. $(\alpha + \beta)\mathbf{x} = \alpha \mathbf{x} + \beta \mathbf{x}$

A7.
$$(\alpha\beta)\mathbf{x} = \alpha(\beta\mathbf{x})$$

- **A8.** 1x = x
- Subspace: If S is a nonempty subset of a vector space V, and S satisfies the conditions
 - (i) $\alpha \mathbf{x} \in S$ whenever $\mathbf{x} \in S$ for any scalar α
 - (ii) $\mathbf{x} + \mathbf{y} \in S$ whenever $\mathbf{x} \in S$ and $\mathbf{y} \in S$

then S is said to be a subspace of V.

- Let v_1, v_2, \dots, v_n be vectors in a vector space V. The set $\{\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n \mid \alpha_1, \dots, \alpha_n \in \mathbb{R}\}$ is called the span of v_1, v_2, \dots, v_n and is denoted by $\text{Span}(v_1, v_2, \dots, v_n)$.
- The vectors v_1, v_2, \dots, v_n in a vector space V are said to be linearly independent if $c_1v_1 + c_2v_2 + \dots + c_nv_n = \mathbf{0}$ implies that all the scalars $c_1 = c_2 = \dots = c_n = 0$.

Theorem 0.1. Let $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ be *n* vectors in \mathbb{R}^n and let $X = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$. The vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ will be linearly independent and span \mathbb{R}^n if and only if X is nonsingular.

• If vectors v_1, v_2, \dots, v_n are linearly independent and span V, then v_1, v_2, \dots, v_n form a basis for V and V has dimension n.

Theorem 0.2. If vectors v_1, v_2, \dots, v_n form a basis for V, then any collection of (strictly) more than n vectors in V, is linearly dependent.

- Let $\{\mathbf{e}_1, \mathbf{e}_2\}$ be the standard basis for \mathbb{R}^2 and $\{\mathbf{u}_1, \mathbf{u}_2\}$ be another ordered basis. $U = (\mathbf{u}_1, \mathbf{u}_2)$ is called the transition matrix from $\{\mathbf{u}_1, \mathbf{u}_2\}$ to $\{\mathbf{e}_1, \mathbf{e}_2\}$. If $\{\mathbf{v}_1, \mathbf{v}_2\}$ is also an ordered basis and V is the transition matrix from $\{\mathbf{v}_1, \mathbf{v}_2\}$ to $\{\mathbf{e}_1, \mathbf{e}_2\}$. Then the transition matrix from $\{\mathbf{v}_1, \mathbf{v}_2\}$ to $\{\mathbf{u}_1, \mathbf{u}_2\}$ is $U^{-1}V$
- The rank of a matrix A, denoted rank(A), is the number of non-zero rows in the reduced echelon form of A. The dimension of the null space of a matrix is called the nullity of the matrix.

Theorem 0.3. If A is an $m \times n$ matrix, then the rank of A plus the nullity of A equals n.

• For an $n \times n$ matrix $A = (a_{ij}), p(\lambda) = \det(A - \lambda I)$ is called the characteristic polynomial of A. $\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}$ is called the trace of A.

Theorem 0.4. If $\lambda_1, \lambda_2, \dots, \lambda_n$ are the eigenvalues of A, then

$$\lambda_1 \cdot \lambda_2 \cdots \lambda_n = p(0) = \det(A) \qquad (0.1)$$

$$\lambda_1 + \lambda_2 + \dots + \lambda_n = \operatorname{tr}(A) = \sum_{i=1}^n a_{ii} \qquad (0.2)$$

Theorem 0.5. Let A and B be two $n \times n$ matrices. If there is a nonsingular matrix S such that $B = S^{-1}AS$, then A and B have the same characteristic polynomial and the the same eigenvalues.

• An $n \times n$ matrix A is said to be diagonalizable if there exists a nonsingular matrix X and a diagonal matrix D such that $X^{-1}AX = D$. We say that X diagonalizes A.

Theorem 0.6. An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

 A mapping L from a vector space V into a vector space W is said to be a linear transformation if for all v₁, v₂ ∈ V and all scalars α

(i)
$$L(v_1 + v_2) = L(v_1) + L(v_2)$$

(ii) $L(\alpha v_1) = \alpha L(v_1)$

• Let $L: V \to W$ be a linear transformation. Let $\mathbf{0}_V$ and $\mathbf{0}_W$ be the zero vectors in V and W, respectively. The kernel of L, denoted ker(L), is defined by

$$ker(L) = \{ v \in V | L(v) = \mathbf{0}_W \}$$

Let S be a subspace of V. The image of S, denoted L(S), is defined by

$$L(S) = \{L(v) | v \in S\}$$

The image of the entire vector space, L(V), is called the range of L.

• Let $L : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. An $m \times n$ matrix A is called the (standard) matrix representation of A if

$$L(\mathbf{x}) = A\mathbf{x}, \ \mathbf{x} \in \mathbb{R}^n$$

Theorem 0.7. For any linear transformation $L : \mathbb{R}^n \to \mathbb{R}^m$, L has an $m \times n$ matrix representation A. Moreover,

$$A = (L(\mathbf{e}_1), L(\mathbf{e}_2), \cdots, L(\mathbf{e}_n))$$

where $\mathbf{e_1}, \cdots, \mathbf{e_n}$ is the standard basis of \mathbb{R}^n .